Аккумуляторы для электромобилей 2019 год – Южнокорейские ученые создали новый тип батарей для электромобилей

Содержание

Электромобили и 2019 год: больше АКБ, быстрее зарядка и коробка передач

Информация для подобного материала собиралась весь 2018 год, но именно презентация Audi e-tron позволила расставить все точки над «i» – сформулировать некоторые мысли, выводы, тенденции. Не буду гарантировать, что все предсказания станут реальностью, но могу гарантировать, что зацепим важные темы. Итак: что наступивший 2019 год приготовил для мира электромобилей?

Электромобиль – на собственной платформе и со своим кузовом

Все к тому шло: электромобиль должен разрабатываться как отдельная единица, а не «еще одна версия» привычной ДВС-модели. Поскольку только этот подход позволяет найти ответы на специфические электромобильные вопросы. Какие именно? Самый главный вопрос – месторасположение аккумулятора. Сейчас производители используют конструкции с АКБ в багажнике, с расположением аккумулятора в нижней части кузова, а также комбинированную конструкцию (частично в багажнике, частично под задним сиденьем). Каждый из подходов имеет свои плюсы и минусы.

В обзорах на

ITC.ua можно найти самые разные электромобили. К примеру – Renault Fluence ZE и Ford Focus Electric: электромобили получены в результате переделки ДВС-модели, здесь тяговый аккумулятор установлен в багажнике, из-за чего полезный объем последнего сократился до минимума. Другой пример – Nissan LEAF, Renault ZOE, Tesla Model 3: разработаны изначально как электрокары, аккумулятор расположен в нижней части кузова, из-за чего несколько зажимается место для ступней. Третий пример – Hyundai Ioniq и VW e-Golf: редкий тип электромобилей с комбинированным расположением аккумулятора.

Однако все больше производителей электромобилей останавливают свой выбор на схеме с расположением аккумулятора в нижней части кузова – ведь это дает максимальные преимущества: большая полезная площадь под установку более емкого аккумулятора, низкий центр тяжести, равномерное распределение нагрузки по осям. Если еще и правильно скомпоновать электромобиль, то можно получить просторный салон и два багажника – основной сзади и дополнительный в передней части. Например электромобили с комбинированным расположением АКБ (частично в багажнике и частично под задним сиденьем) могут все-таки страдать уменьшением багажника, да и относительно большой аккумулятор не установить – все-таки место ограничено. А электромобили с расположением АКБ в багажнике и вовсе возводят вышеперечисленные минусы в абсолют. В итоге – тяговый аккумулятор должен быть по центру. Но что делать с простором для ног? Ответов сразу два: наращивать высоту электромобиля и, одновременно, уменьшать толщину тягового аккумулятора.

Так, наращивание высоты кузова дает возможность сделать посадку более высокой и вертикальной – и дополнительный «слой» аккумулятора в ступнях уже не столь ощутим: т.е. для электромобиля идеально подходит кузов типа «кроссовер» или «минивэн». А если сделать аккумулятор довольно тонким, то его влияние и вовсе станет незаметным. К примеру, в Audi e-tron использован аккумулятор длиной 2,28 м и шириной 1,63 м, но его высота составляет лишь 0,34 м – вот зачем нужно расположение аккумулятора в базе: сделать его длинным и широким, но низким. Добавьте к этому кузов высотой 1,62 м – ниже кроссоверов, но выше легковых автомобилей – и получаем достаточный простор в салоне, а также удобный пол, где влияние аккумулятора вовсе не ощущается. В тоже время тяжелый аккумулятор (700 кг в случае Audi e-tron) улучшает устойчивость: производитель заявляет, что центр тяжести Audi e-tron находится на несколько сантиметров ниже, чем у Audi SQ7, примерно на уровне обычных легковых моделей.

Часто говорят, что

Audi etron построен на платформе MLB – как модели Audi Q5, Audi Q7, Audi Q8 и др. – но это не совсем так. Ведь основу электромобиля задает центрально-расположенный аккумулятор, который интегрирован в силовую структуру кузова. Можно говорить об использовании некоторых компонентов платформы MLB – прежде всего, подвески. При этом ряд узлов ходовой части все-таки отличается: например, тормоза.

В итоге первый вывод: пора распрощаться с идеей созданий электромобиля как «одной из версий ДВС-модели» – думаю, начиная с 2019 года мы больше не увидим ни одной попытки переделки ДВС-авто в электромобиль. Электрокар должен строиться как отдельная модель, либо возможность создания электрической версии должна быть заложена изначально на этапе проектирования основной модели семейства: примеры – Hyundai Ioniq и Kona, DS 3 Crossback. Преимущество – за «высокими» моделями (кроссовер, минивэн), тяговый аккумулятор расположен в нижней части кузова, в пределах колесной базы.

Рост емкости АКБ: 40-60-100 кВтч, кто больше?

Почему так важны габариты АКБ? Потому, что пока не изобрели революционно-емких аккумуляторов, у нас есть лишь один вариант увеличения запаса хода – экстенсивный: больше размер, больше емкость. А наращивание емкости и запаса хода необходимы – этого ждет потребитель. Если 1,5 года назад аккумулятор на 40 кВтч в электромобиль В-С-класса казался большим, то сегодня он воспринимается как должное. Мало того – выход электромобилей Chevrolet Bolt и Hyundai Kona Electric поднял эту планку до 60 кВтч. Что, в свою очередь, влияет на ТОП-модели: сейчас негласной нормой становится аккумулятор емкостью около 100 кВтч.

Ведь опыт показал, что «идеального» расхода 10 кВтч на 100 км можно достичь крайне редко: электрокар В-С-класса в среднем потребляет 13-15 кВтч на 100 км пробега, крупная и тяжелая модель (Tesla Model S, Audi e-tron) может расходовать 20-30 кВтч на 100 км пробега. Как результат: для получения реального пробега в 350-500 км необходимо иметь АКБ емкостью от 40-60 кВтч до 90-100 кВтч в зависимости от класса и размера электромобиля. Причем с введением «мирового» измерительного цикла WLTP придется указывать цифры запаса хода, которые более-менее соответствуют реальности – уже не получится приписать себе больше пробега, хитро оперируя данными разных измерительных циклов.

Пять лет назад электромобили В-С-класса обходились аккумуляторами на 20-30 кВтч, пару лет назад эта норма возросла до 30-40 кВтч, а теперь мы готовимся шагнуть к отметке «60 кВтч»: вслед за Chevrolet Bolt ждем Nissan LEAF

с аккумулятором на 60 кВтч. Для ТОП-моделей уже сейчас становится нормой аккумулятор емкостью около 100 кВтч: Jaguar iPace – это АКБ на 90 кВтч, Audi etron – 95 кВт, Tesla Model S и Model X – до 100 кВтч, каждый из этих электрокаров может проехать 400-500 км при вполне реальных условиях. На этом фоне электромобиль MercedesBenz EQC уже в отстающих – лишь 80 кВтч и запас хода 450 км в измерительном цикле NEDC (что в реальности может обернуться примерно в 350 км). А ситуация с BMW iX3 и вовсе неясна.

Второй вывод: мы стоим на пороге следующего витка развития электромобилей, когда любая модель сможет проезжать 400-500 км в реальности. Похоже, что 2019 год можно будет назвать годом рождения т.н. «300-мильных электромобилей».

Быстрая зарядка аккумулятора: рабочая мощность – 150-350 кВт

Больше аккумулятор – больше времени на зарядку. Традиционная розетка способна отдавать мощность максимум 2-3 кВт, что означает 20-30 часов для полной зарядки аккумулятора на 40-60 кВтч и около 30-50 часов для зарядки аккумулятора на 90-100 кВтч: да, сутки заряжаться – это реальность. В таком случае все более важным становятся возможности «ускоренной зарядки» (переменный ток, одна или три фазы, 7-22 кВт) и «быстрой зарядки» (постоянный ток высокого напряжения, специальные зарядный станции типа CHAdeMO или Supercharger). Мощность «ускоренной зарядки» напрямую зависит от линии, подведенной к вашему дому, а также от того, сколько готов принимать электромобиль: чем больше – тем лучше. Уровень «ускоренная зарядка 7 кВт» уже пройден, следующий шаг – зарядка мощность 10-20 кВт: это соответствие сегодняшнему дню и небольшой задел на будущее. Причем ряд электромобилей уже могут работать с такой мощностью.

Но еще интереснее ситуация с «быстрыми зарядками», которые важны при необходимости быстрой подзарядки: например, во время длительных поездок или если эксплуатировать электрокар постоянно (такси, служба доставки). Изначально разъем CHAdeMO проектировался под мощность 100 кВт, а разъем CCS Combo – даже под 170 кВт. Но по ряду причин, еще недавно традиционным лимитом для CHAdeMO и CCS Combo была отметка допустимой мощности около 50 кВт. На этом фоне Tesla Supercharger с реальной рабочей мощностью 100-120 кВт была «в дамках». Однако Audi e-tron стал первым серийным электромобилем, который готов работать с мощностью до 150 кВт: новый рекорд! Традиционное правило «80% АКБ за 30 минут» осталось неизменным, но обязательно следует уточнять, что 80% АКБ в данном случае – это 70-75 кВтч и потенциальные +300 км пробега. Однако…

Вот станция, где заряжались электрокары Audi etron во время презентации: обратите внимание на толщину зарядного кабеля (на голубой правой стойке) и надпись «NON COOLED» на соседней центральной стойке. Все верно – кабель для «быстрой зарядки» на 150 кВт имеет жидкостное охлаждение: при зарядке с максимальной мощностью провода греются настолько сильно, что способны расплавить изоляцию! По словам инженеров Audi, «водораздел» находится на отметке около 100 кВт: все, что выше – требует жидкостного охлаждения. Но и 150 кВт уже не предел: в конце 2018 года открылись первые зарядные станции с мощностью 350 кВт.

Третий вывод: в 2019 году ждем повышения мощности зарядок. Для «ускоренной зарядки» новым общепринятым стандартном должна стать отметка 10-11 кВт, «хорошисты» должны работать с мощностью около 20 кВт. «Быстрые зарядки» (причем это касается всех типов зарядных разъемов) должны подтянуться к отметке 100-150 кВт и сделать эту мощность общепринятым стандартом – некоторые современные электромобили уже готовы работать с этой мощностью.

Переход силовой части электромобиля на 800 В

Упоминание о зарядках мощностью 350 кВт неслучайно – эта планка может быть взята при появлении серийных электромобилей с рабочим напряжением 800 вольт. Впервые о подобных разработках заявила компания Porsche, теперь все идет к серийному воплощению идеи на модели Taycan. И если в прошлом Porsche, Audi, да и Volkswagen в целом были в догоняющих относительно Tesla, то теперь у «немцев» появился шанс опередить «американцев».

Почему это так важно? Потому что вся силовая электросеть любого электрокара построена на основе тягового аккумулятора, который работает с постоянным током (конечно, еще есть преобразователи-инверторы тока и электромоторы, которые работают с переменным током, но пока речь идет именно об АКБ). Сегодня большинство электромобилей имеют тяговый аккумулятор с рабочим напряжением до 400 вольт, а в вышерассмотренном случае этот параметр обещают поднять вдвое. В итоге потенциально, но это позволит либо вдвое увеличить рабочую мощность, либо вдвое уменьшить аккумулятор при сохранении неизменных характеристик, либо выбрать компромисс между этими двумя пунктами. Именно для такого аккумулятора и нужна зарядная станция мощностью 350 кВт: обещано, что 80% АКБ можно будет зарядить уже за 15-20 минут. Пока сложно оценить весь масштаб трансформаций, который несет аккумулятор с рабочим напряжением 800 вольт, но уже ясно – мы стоим на пороге небольшой АКБ-революции, которая готова дать плоды уже сейчас, а не в отдаленном будущем, наполненном постоянно-обещаемыми графеновыми аккумуляторами.

Первым электромобилем с аккумулятором на 800 вольт станет электромобиль Porsche Taycan, сразу за ним последует Audi e-tron GT – презентация серийной модели запланирована на 2019 год, производство и продажи должны стартовать в 2020-м. Кстати, вспоминая первый пункт: оба электрокара построены на собственной большой премиальной платформе PPE. Также Volkswagen недавно представил платформу MEB, на которой будут строиться компактные и среднеразмерные электромобили – прежде всего, семейство VW I.D. и небольшие электро-Audi.

Четвертый вывод: 2019 год обещает нам мини-революцию в тяговых аккумуляторах. Только речь идет не о призрачном графеновом АКБ, а о развитии уже существующей технологии аккумулятора типа «литий-ионный».

Электромоторы и… коробка передач?!

Да, все так. Электромобилям всегда ставили в пример их простоту, где одним из ключевых пунктов было отсутствие сложной коробки переключения передач. Для условных Nissan LEAF, Renault ZOE, Chevrolet Bolt максимальная скорость около 150 км/ч не является чем-то критическим, равно как и разгон 0-100 км/ч за 8-13 секунд – параметры вполне соответствуют запросам класса. Но возьмите Audi e-tron и Jaguar i-Pace: суммарная мощность электромоторов более 400 л.с., разгон 0-100 км/ч в пределах 5-6 секунд, однако лишь 200 км/ч максимальной скорости – в последнем параметре их обгоняют ДВС-родственники в заметно более слабых версиях. Почему так? Потому, что электромоторы работают с одноступенчатыми редукторами (плюс понижающая главная пара) – к примеру, для Audi e-tron использованы редукторы с передаточными числами 9,205 (передний) и 9,083 (задний). В тоже время – электромоторы ограничены по количеству оборотов: электромоторы Audi e-tron крутятся до 13 300 об/мин, электромоторы Tesla могут выдавать до 18 000 об/мин. Конструкторы стараются подобрать передаточное число так, чтобы найти баланс между разгоном и «максималкой». Когда компания Tesla представила Roadster 2, то удивила публику огромным крутящим моментом – 10 000 Нм! Но важен контекст: это момент на колесах, но в автомобильном мире принято измерять момент на валу двигателя. К примеру, электромоторы Audi e-tron развивают суммарный крутящие момент 660 Нм, однако на колесах – уже 5 800 Нм. При этом максимальна скорость электромобиля Audi e-tron достигает лишь 200 км/ч: как увеличить «максималку» и сохранить высокий крутящий момент на колесах?

Ответ очевиден – коробка передач! Это не шутка, опытные наработки уже есть – одним из признанных специалистов в этой узкоспециализированной сфере является компания Rimac: на мелкосерийных электрокарах Rimac используется 2-ступенчатая КПП для электромоторов. Встречались подобные КПП в конструкции некоторых подзаряжаемых гибридов и электромобилей именитых автомобильных компаний. Пусть пока лишь в виде прототипов, концептов, мелкосерийных моделей – но «процесс пошел». Когда коробки передач для электромоторов станут массовыми? В тот момент, когда это станет более технологически оправдано и экономически выгодно, нежели банальное наращивание мощности и размера электромоторов – вопрос лишь в размере, весе, цене последнего.

Одна из неожиданных тенденций – появление 2-ступенчатой КПП. Реальные электромобили с «коробкой» уже есть: мелкосерийные спорткары Rimac. К слову, недавно 10% Rimac выкупила компания Porsche и совсем неспроста: Rimac зарабатывает не столько на производстве электромобилей, сколько на разработке технологий для других производителей – небольшая хорватская компания является одним из техно-лидеров в мире электрокаров. Разработку электропривода с КПП ведут и другие производители: например, есть концепт модуля GKN eTwinsterX, где объединился электромотор, 2-ступенчатая КПП, и даже система управления вектором тяги. Хотя последнего можно добиться и более простым способом: двумя электромоторами сзади (концепт-кар Audi etron quattro) или подтормаживанием правых/левых колес (серийный Audi etron).

Пятый вывод: похоже, что коробка передач для электромобилей станет реальностью. Первые массовые электромобили с 2-ступенчатой АКПП могут появиться уже в 2019-2020 гг., причем далеко не факт, что все остановится на двух передачах. В будущем коробка переда должна появиться даже на недорогих электромобилях В-С-класса.

Важные мелочи: тормоза и рекуперация, охлаждение электромотора, борьба с весом

Развитие электромобиля происходит и в других областях и направлениях, просто на них редко обращают внимание. В репортаже по Audi e-tron я детально рассказывал о проработке аэродинамики электромобиля, упомянул про быструю зарядку на 150 кВт и развитую систему терморегуляции (40 м патрубков и около 20 л охлаждающей жидкости). Однако проработка каждого вопроса, на самом деле, намного глубже.

К примеру, возьмем систему охлаждения. Сейчас жидкостное охлаждение аккумулятора становится общепринятой нормой – это позволяет продлить срок службы батареи. Однако также жидкостное охлаждение получили и другие компоненты электрокара, прежде всего – электромоторы. Причем если ранее речь шла только о жидкостном охлаждении статора (внешняя часть), что реализовать довольно просто, то теперь речь заходит также о жидкостном охлаждении ротора (внутренняя часть, которая вращается). Еще недавно патент на жидкостное охлаждение ротора был только у Tesla: жидкость циркулировала внутрь вала электромотора. Однако электромобиль Audi e-tron также получил жидкостное охлаждение в области ротора: жидкость циркулирует во внутреннем корпусе, где расположен вал ротора, а также около подшипников вала ротора. Зачем? Вспомните турбо-моторы и проблему с подшипниками турбины: они изнашивались из-за того, что внутри турбины была высока температура, что приводило к коксованию смазки после остановки мотора (вот для этого и нужны были турботаймеры). Теперь со схожей проблемой столкнулись и электромобили с мощными моторами: есть вероятность перегрева подшипников ротора. По словам представителей Audi, если оптимальная температура для АКБ составляет 25-35⁰ С, то в электромоторе она может достигать 180⁰ С – и это при наличии системы охлаждения, а что будет без нее?

Еще пример – тормоза. В электрокарах и гибридах используется двойная система торможения: рекуперация плюс обычные тормоза с гидравлическим приводом. Эти системы сложно увязать между собой как в логике работы, так и в ощущениях на педали тормоза для человека. Конструкторы ищут возможность решить данную проблему. Так, в Audi e-tron педаль тормоза вовсе не связана с гидравлическим контуром основных дисковых тормозов: фактически, когда вы давите на педаль тормоза – то лишь даете команду на электронный датчик «я хочу замедлиться». А далее система самостоятельно выбирает, какой метод торможения задействовать. Причем замедления интенсивностью до 0,3g достигается только за счет рекуперации (без основных тормозов), хотя для этого следует нажать педаль тормоза – инженеры Audi уверяют, что так привычнее для рядового водителя. А еще они уверяют, что такого замедления достаточно для остановки в 90% случаев: можно ездить целый день и ни разу не затормозить в реальности привычным способом – колодками и дисками. Правда тогда на дисках может образоваться налет ржавчины, а еще нужно убрать грязь и пыль: поэтому в программу управления тормозами Audi e-tron прописали правило, что электромобиль должен раз в сутки все-таки тормозить по-обычному, зажимая тормозной диск колодками. К слову, максимальная мощность в режиме рекуперации достигает 220 кВт или около 70% от максимальной мощности электромоторов – а это очень много: на моей памяти лишь несколько электромобилей подбирались к отметке 50%! И это очень хорошо: мощная рекуперация позволяет накапливать максимально-возможное количество энергии, не прибегая к привычному торможению и потере энергии в виде тепла от трения привычных тормозов.

Наконец, последний пункт – борьба с весом. Электромобиль Audi e-tron весит 2 490 кг, электрокар Mercedes EQC весит 2 425 кг – это много… К примеру, более габаритные Audi Q8 и VW Touareg оказываются легче на 200-400 кг. Причина известна: большие и тяжелые (650-700 кг) аккумуляторы. Попытки борьбы с весом уже были – можно вспомнить карбоново-алюминиевый электромобиль BMW i3 или Jaguar i-Pace, который весит 2 133 кг благодаря широкому использованию алюминия в структуре кузова. Можно не сомневаться, что конструкторы будут стараться снизить вес электромобиля разными способами – и совершенствованием, уменьшением, облегчением аккумуляторов, и применением легких материалов в конструкции электромобиля (карбон, алюминий).

Для достижения максимального результата важна каждая мелочь: тормоза и рекуперация, охлаждение аккумулятора и электромоторов. Примером борьбы с весом может быть BMW i3: алюминиевое шасси плюс карбоновый кузов – в итоге BMW i3 оказался не тяжелее обычных ДВС-автомобилей В-С-класса.

Шестой вывод: если хотите получить конкурентный электромобиль, то следует обращать внимание на каждую мелочь – аэродинамика, охлаждение, тормоза, облегчение…

itc.ua

Аккумуляторы для электромобилей (мировой рынок)

Основная статья: Электромобили

2019: Топ крупнейших аккумуляторов для электромобилей

27 ноября 2019 года агентство Reuters опубликовало статью, в котором назвало имена крупнейших в мире производителей аккумуляторных батарей для электромобилей.

Contemporary Amperex Technology (CATL)

CATL является лидером рынка электромобильных батарей. Компания сотрудничает с такими гигантами, как BMW, Volkswagen, Daimler, Volvo, Toyota и Honda.

Reuters опубликовало статью, в котором назвало имена крупнейших в мире производителей аккумуляторных батарей для электромобилей

CATL заняла первое место во многом благодаря программам государственного субсидирования продаж электрокаров, оснащённых аккумуляторами китайского производства. Рынок электрических машин в КНР является крупнейшим в мире, однако в 2020 году субсидии планируется отменить.

Panasonic

Panasonic производит аккумуляторы для электромобилей в Японии, Китае и планирует перевести некоторые из своих заводов в новое совместное предприятие с Toyota. Однако главная фабрика у Panasonic расположена в Неваде (США), там производятся батареи для машин Tesla.

BYD

Китайская компания BYD, в которую инвестировал Уоррен Баффет, входит в тройку крупнейших в мире производителей аккумуляторов для электромобилей. BYD использует батареи в основном для собственных автомобилей и автобусов. Компания планирует запустить производство в Европе.

LG Chem

LG Chem считается одним из первых производителей аккумуляторов для электромобилей, когда начала поставлять их компании General Motor. В число клиентов южнокорейского вендора также входят Ford, Renault, Hyundai Motor, Tesla, Volkswagen и Volvo.

Samsung SDI

Эта компания изготавливает батареи для электромобилей в Южной Корее, Китае и Венгрии. Samsung SDI имеет заказы от BMW, Volvo и Volkswagen. Южнокорейская компания намерена инвестировать 1,2 млрд евро в расширение своего завода в Венгрии, а европейские власти изучают, соответствует ли финансовая поддержка Будапешта европейскому законодательству.[1]

Электромобили

  • Tesla Model, Tesla Semi Truck- Tesla Motors
  • Polestar, Volvo 7900 (беспилотный электроавтобус), Volvo XC40 — Volvo Cars Group
  • Toyota Электромобили, Toyota e-Palette (беспилотный электромобиль)
  • Audi e-tron (электромобиль)
  • BMW i3 Электромобиль, BMW iX3, BMW i4
  • Freightliner eCascadia (электрический грузовик)
  • Honda Электрокары, Honda e (электромобиль), Honda Everus VE-1
  • Hyundai Kona Electric (электромобиль)
  • Ford Электромобили Ford Transit Custom PHEV Ford Transit Smart Energy
  • Volkswagen Электромобили, Volkswagen Moia, Volkswagen ID3
  • Continental
  • Bosch e-axle
  • EVlink Wallbox Электрозаправки
  • Nissan Leaf Nissan Яндекс.Авто Концепт
  • Siemens eHighway Электромобили
  • Catalyst E2 (электроавтобус)
  • Dyson
  • Roborace Robocar
  • Mercedes-Benz Concept IAA, Mercedes-Benz EQC, Vision Mercedes-Maybach Ultimate Luxury
  • Enevate
  • Aston Martin RapidE Электромобиль
  • Jaguar I-Pace (электромобиль)
  • Porsche Taycan электромобиль
  • Mazda MX-30 (электромобиль)
  • Enverge (электрокроссовер)
  • R1T (электромобиль)
  • Manta5 Hydrofoiler XE-1 (водный электровелосипед)
  • Panasonic eCUV Компактный электротранспорт для бизнеса

Примечания

www.tadviser.ru

Toyota и Panasonic начнут выпуск сверхъемких аккумуляторов для электромобилей

твердотопливная батарея

Твердотельные аккумуляторы большой емкости для электромобилей планируют производить на вновь создаваемом совместном предприятии (СП) компании Toyota и Panasonic, сообщает информресурс Nikkei Asian Review.

Соответствующее соглашение стороны уже заключили.

Согласно доступной информации, к 2020 году объединенное предприятие планирует построить пять заводов по производству твердотопливных батарей в Японии и Китае. Эти батареи и легче, и безопаснее, и энергоэффективнее своих предшественниц – традиционных литий-ионных батарей.

Новое СП при производстве твердотопливных батарей будет использовать технологию пока еще не используемую в промпроизводстве. С ее помощью производители собираются увеличить емкость аккумуляторов в 50 раз по сравнению с ныне существующими аналогами.

Ко всему прочему, Toyota уже некоторое время работает над технологией производства твердотельных батарей, однако никаких официальных комментариев по этому поводу нет -эта информация пока строго конфиденциальная.

Некоторое время назад сообщалось, что японская компания TDK также создала миниатюрные твердотельные аккумуляторы. Правда, они предназначались не для автомобилей, а для переносных устройств и смартфонов. Эти мини-батареи способны выдерживать до 1 тыс циклов перезарядки, они безопаснее, чем литий-ионные аккумуляторы.

Такая батарея также может применяться в домашних устройствах – пульты дистанционного управления, в смартфонах и планшетах.

Издание Nikkei ранее сообщало, что TDK разошлет партнерам первую тестовую партию аккумуляторов, так как планирует запустить их в широкое производство.

В настоящее время информации о том, сколько будет стоить батарея, нет, но известно, что применение таких твердотопливных мини-батарей позволит еще больше снизить размер гаджетов, увеличив при этом их мощность, так как появится возможность устанавливать дополнительные компоненты внутрь “коробки”.  :///


teknoblog.ru

Новый тип аккумулятора позволит электромобилям проехать почти 2400 километров без подзарядки

Электромобили сегодня все более плотно входят в нашу с вами повседневную жизнь. Практически в любом крупном городе-мегаполисе (в том числе и в нашей стране) можно найти зарядную станцию для того же электромобиля Tesla. И в емкости аккумулятора, на самом деле, и кроется одна из основных проблем современных электрокаров. Они все еще не настолько мощные, как хотелось бы. Однако все может измениться благодаря изобретению британского инженера Тревора Джексона.

Тревор Джексон успел поработать в качестве инженера на такие компании, как Rolls-Royce, BAE Systems (оборонная компания Великобритании, занимающаяся разработками в области вооружений, информационной безопасности, аэрокосмической сфере), а также отслужить в качестве офицера военно-морского флота Ее Королевского величества.

Как сообщает редакция Daily Mail, еще в начале двухтысячных годов господин Джексон задумался о том, что традиционные литий-ионные аккумуляторы устарели и нужно как-то модифицировать эту технологию. Тогда, ясное дело, об электромобилях инженер даже не помышлял. Он просто решил разработать на основе алюминия более емкий аккумулятор, чем литий-ионные аналоги. Кроме того, в качестве электролита Тревор Джексон решил использовать безопасное для окружающей среды вещество. На разработку ушло почти 18 лет. За это время британец разработал экологически чистый аккумулятор, который подходит для использования в любой сфере — от создания обычных батарей до элементов питания электромобилей и даже самолетов. Но не все было так гладко.

С тех пор, как инженер еще 10 лет назад показал прототип своего устройства компаниям, занимавшихся сферой электрификации, он испытывал давление со стороны автомобильной индустрии. Батарею называли непроверенной, а ее возможности — завышенными. Если верить инженеру, то батарея Джексона вмещает в девять раз больше киловатт-часов электричества на килограмм, чем литий-ионная. Если поставить сопоставимую по весу и размеру батарею на Tesla Model S, то дальность пробега электромобиля увеличится с 600 до почти 2400 километров.

Прорыв в моих экспериментах наступил тогда, когда я нашел новую формулу электролита — не токсичного и не едкого. Я даже выпил его, когда демонстрировал инвесторам, чтобы доказать, что он безопасен», — говорит Тревор Джексон. Кроме безопасности, электролит обладает и другим важным преимуществом — он может работать с металлом низкого качества, например, с переработанными банками из-под газировки. Его формулу, однако, я держу в строжайшей тайне.

И это можно было бы принять за очередную «утку», но, во-первых, независимая экспертная оценка, проведенная правительственным агентством UK Trade and Investment в 2017 году, пришла к выводу, что батарея Джексона действительно «соответствует заявленным характеристикам» и основана на «заслуживающей доверия технологии». В любом случае мы будем следить за развитием событий и если у данной истории появятся новые подробности — вы узнаете их первыми в нашем новостномканале в Телеграм.

А во-вторых, инженер уже подписал многомиллионный контракт с британской компанией Austin Electric, которая будет производить аккумуляторы по технологии господина Джексона. Конечно, сразу на электромобили их устанавливать никто не станет. Сначала планируется использование аккумуляторов нового типа в трехколесных азиатских такси (моторикшах), затем в электровелосипедах и самокатах, а потом настанет и очередь электрокаров. Сообщается, что в свободной продаже аккумуляторы нового типа могут появиться уже в 2020 году.

www.atomic-energy.ru

В 2019 цена литий-ионных батарей для электромобилей упадёт ниже $200 за кВт*ч

Компания EnergyTrend, подразделение тайваньской TrendForce опубликовала очередной прогноз развития электрического транспорта и экономики батарей для электромобилей.

Компания прогнозирует, что доля электромобилей в мировых продажах достигнет 5% к 2020 году и 8-9% к 2023 г. Согласно EnergyTrend, строгие цели снижения выбросов СО2 придают основной импульс развитию электрического транспорта. Целевой показатель выбросов автомобилей в Китае в 2015 составлял 200 грамм на километр пробега. На 2020 год он снижен до 119 грамм. В Северной Америке и Европе целевые показатели выбросов на 2020 г снижены до 124 и 95 грамм на километр соответственно. То есть к 2020 году нормативные экологические характеристики двигателей в Китае впервые будут выше, чем в Северной Америке.

Китай таким образом стимулирует свою быстрорастущую промышленность по производству «низкоэмиссионных» автомобилей, а также литий-ионных аккумуляторов, где китайские компании занимают лидирующие позиции.

По информации EnergyTrend, стоимость батарей быстро снижается и будет снижаться дальше благодаря «техническим прорывам». Например, в 2016 году цена литий-ионных аккумуляторов составляла 400-600 долларов США на киловатт-час емкости. В 2018 году она снизилась до 250-300 долларов. Компания прогнозирует, что в 2019 году она упадёт ниже $200/кВт*ч. Напомню, Тесла, «бегущая» впереди рынка, планирует снизить стоимость литий-ионных элементов до $100 уже в текущем году, а комплектов батарей (packs) до этого же уровня в течение двух лет.

На графике цена батарей сравнивается с ценой топливных элементов, вырабатывающих электроэнергию в «водородных автомобилях».

Как мы видим, несмотря на снижение стоимости топливных элементов, они пока существенно проигрывают в экономическом плане литий-ионным аккумуляторам. По данным EnergyTrend, средняя цена комплекта батарей для электромобиля составляет сегодня 15 тысяч долларов США, и планируется, что она упадёт ниже $10 000 в 2020 году. Нынешняя цена топливных элементов, установленных в водородных автомобилях равняется в среднем $20 000.

Как отмечают авторы, сегодня автомобили на топливных элементах имеют преимущество в  дальности пробега на одной заправке, однако предполагается, что улучшение характеристик литий-ионных батарей и снижение их стоимости будет постепенно нивелировать данное превосходство водородных авто.

renen.ru

зреет прорыв в сфере АКБ

В США создана батарея с удельной ёмкостью в семь раз большей, чем у литий-ионных аккумуляторов.
Электромобили: зреет прорыв в сфере АКБ

Научные сотрудники Иллинойского университета изготовили прототип литий-диоксид углеродного аккумулятора (Li—CO₂). В отчёте разработчиков, опубликованном в журнале Advanced Materials, говорится, что учёным удалось избавиться от главного недостатка литий-диоксид углеродных батарей — малого количества циклов перезарядки (около 100), вызванного выделением углерода во время химических реакций. Для этого пришлось изменить состав электролита: к диметилсульфоксиду, который хорошо проводит ионы, добавили наночешуйки дисульфид молибдена.

Гибридный электролит позволил запустить обратимый электрохимический цикл, который полностью нейтрализует CO₂. Лаборанты с успехом протестировали прототип и провели 500 последовательных циклов зарядки/разрядки без потерь энергоёмкости. Важнейшее достижение, если учесть, что прежде в мире никому не удавалось создать батарею Li—CO₂, способную к многократной перезарядке.

Плотность хранения энергии литий-диоксид углеродной батареи составила 1 876 ватт-часов на килограмм массы, что в семь раз больше, чем могут предложить нынешние литий-ионные аккумуляторы. Впрочем, пока это прототип и до внедрения в производство, если такое случится, пройдёт немало времени. Но процесс, как говорится, идёт.

Мда. Мне сразу вспоминается 4-я техническая ревлюци я, которая грядет скоро   из одним столпов которой, будет хранение энергии. Электромобили, пробегаю6щие без дозарядки 2000км и более, искусственный интеллект, управляющий машиной. Вопрос, где будет наше государство и где будем мы в это время?
А Компанию Тесла хоронить еще рано, хотя ее акции и опустились с 380 до 256 долларов, но в перспективе она выглядит лучше, чем большинство наших голубых фишек, прижимаемых государством.  

smart-lab.ru

Создан новый тип аккумуляторов для электромобилей без кобальта — Новости транспорта

цей матеріал доступний українською

Специалисты IBM создали аккумулятор без кобальта, используя материалы из морской воды.

IBM создали аккумулятор без кобальта / фото IBM

В будущем электромобили будут играть важную роль в сокращении выбросов парниковых газов, но пока они не являются идеальным вариантом. На сегодня большинство электромобилей работают на литий-ионных аккумуляторах, изготовленных из тяжёлых металлов, таких как никель и кобальт. Их поставки ограничены, а условия добычи не соответствуют нормам.

Читайте такжеЕС выделит миллиардные субсидии на производство батарей для электромобилей

У IBM Research Battery Lab есть решение – новая батарея, в которой отсутствуют тяжёлые металлы. Вместо них – материалы, полученные из морской воды, пишет itc.ua.

По данным IBM, новые аккумуляторы могут превзойти существующие литий-ионные батареи по стоимости, времени зарядки (менее пяти минут, чтобы достичь 80%), удельной мощности и энергоэффективности. Такая батарея менее огнеопасна, её можно использовать в самолётах, электромобилях и умных энергосистемах.

В новом источнике питания используются три новых запатентованных материала, включая катодный материал, который не содержит кобальта и никеля, а также жидкий электролит. Эта уникальная комбинация способна подавлять образование дендритов металлического лития во время зарядки, что снижает вероятность возгорания аккумулятора.

Чтобы вывести новую батарею за пределы лаборатории, команда исследователей IBM заключила партнёрское соглашение с Mercedes-Benz, поставщиком электролитных батарей Central Glass и производителем батарей Sidus.

фото IBM

В дальнейших планах – разработка аккумулятора, повышение его производительности с помощью ИИ и поиск ещё более безопасных и высокопроизводительных материалов.

Если вы заметили ошибку, выделите ее мышкой и нажмите Ctrl+Enter

www.unian.net

Отправить ответ

avatar
  Подписаться  
Уведомление о